eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
↳ QTRS
↳ Non-Overlap Check
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
MIN1(cons2(N, cons2(M, L))) -> LE2(N, M)
IFMIN2(true, cons2(N, cons2(M, L))) -> MIN1(cons2(N, L))
IFREPL4(false, N, M, cons2(K, L)) -> REPLACE3(N, M, L)
REPLACE3(N, M, cons2(K, L)) -> EQ2(N, K)
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
IFSELSORT2(false, cons2(N, L)) -> SELSORT1(replace3(min1(cons2(N, L)), N, L))
IFMIN2(false, cons2(N, cons2(M, L))) -> MIN1(cons2(M, L))
SELSORT1(cons2(N, L)) -> EQ2(N, min1(cons2(N, L)))
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
SELSORT1(cons2(N, L)) -> MIN1(cons2(N, L))
IFSELSORT2(false, cons2(N, L)) -> REPLACE3(min1(cons2(N, L)), N, L)
LE2(s1(X), s1(Y)) -> LE2(X, Y)
IFSELSORT2(true, cons2(N, L)) -> SELSORT1(L)
MIN1(cons2(N, cons2(M, L))) -> IFMIN2(le2(N, M), cons2(N, cons2(M, L)))
IFSELSORT2(false, cons2(N, L)) -> MIN1(cons2(N, L))
SELSORT1(cons2(N, L)) -> IFSELSORT2(eq2(N, min1(cons2(N, L))), cons2(N, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MIN1(cons2(N, cons2(M, L))) -> LE2(N, M)
IFMIN2(true, cons2(N, cons2(M, L))) -> MIN1(cons2(N, L))
IFREPL4(false, N, M, cons2(K, L)) -> REPLACE3(N, M, L)
REPLACE3(N, M, cons2(K, L)) -> EQ2(N, K)
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
IFSELSORT2(false, cons2(N, L)) -> SELSORT1(replace3(min1(cons2(N, L)), N, L))
IFMIN2(false, cons2(N, cons2(M, L))) -> MIN1(cons2(M, L))
SELSORT1(cons2(N, L)) -> EQ2(N, min1(cons2(N, L)))
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
SELSORT1(cons2(N, L)) -> MIN1(cons2(N, L))
IFSELSORT2(false, cons2(N, L)) -> REPLACE3(min1(cons2(N, L)), N, L)
LE2(s1(X), s1(Y)) -> LE2(X, Y)
IFSELSORT2(true, cons2(N, L)) -> SELSORT1(L)
MIN1(cons2(N, cons2(M, L))) -> IFMIN2(le2(N, M), cons2(N, cons2(M, L)))
IFSELSORT2(false, cons2(N, L)) -> MIN1(cons2(N, L))
SELSORT1(cons2(N, L)) -> IFSELSORT2(eq2(N, min1(cons2(N, L))), cons2(N, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
LE2(s1(X), s1(Y)) -> LE2(X, Y)
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
The following pairs can be strictly oriented and are deleted.
The remaining pairs can at least by weakly be oriented.
LE2(s1(X), s1(Y)) -> LE2(X, Y)
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
IFMIN2(false, cons2(N, cons2(M, L))) -> MIN1(cons2(M, L))
IFMIN2(true, cons2(N, cons2(M, L))) -> MIN1(cons2(N, L))
MIN1(cons2(N, cons2(M, L))) -> IFMIN2(le2(N, M), cons2(N, cons2(M, L)))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
The following pairs can be strictly oriented and are deleted.
The remaining pairs can at least by weakly be oriented.
IFMIN2(false, cons2(N, cons2(M, L))) -> MIN1(cons2(M, L))
IFMIN2(true, cons2(N, cons2(M, L))) -> MIN1(cons2(N, L))
MIN1(cons2(N, cons2(M, L))) -> IFMIN2(le2(N, M), cons2(N, cons2(M, L)))
cons2 > [IFMIN2, false, MIN1] > true
0 > [IFMIN2, false, MIN1] > true
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
The following pairs can be strictly oriented and are deleted.
The remaining pairs can at least by weakly be oriented.
EQ2(s1(X), s1(Y)) -> EQ2(X, Y)
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
IFREPL4(false, N, M, cons2(K, L)) -> REPLACE3(N, M, L)
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
The following pairs can be strictly oriented and are deleted.
The remaining pairs can at least by weakly be oriented.
IFREPL4(false, N, M, cons2(K, L)) -> REPLACE3(N, M, L)
Used ordering: Combined order from the following AFS and order.
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
[cons1, eq, 0, true] > false
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
REPLACE3(N, M, cons2(K, L)) -> IFREPL4(eq2(N, K), N, M, cons2(K, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
IFSELSORT2(true, cons2(N, L)) -> SELSORT1(L)
IFSELSORT2(false, cons2(N, L)) -> SELSORT1(replace3(min1(cons2(N, L)), N, L))
SELSORT1(cons2(N, L)) -> IFSELSORT2(eq2(N, min1(cons2(N, L))), cons2(N, L))
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))
The following pairs can be strictly oriented and are deleted.
The remaining pairs can at least by weakly be oriented.
IFSELSORT2(true, cons2(N, L)) -> SELSORT1(L)
IFSELSORT2(false, cons2(N, L)) -> SELSORT1(replace3(min1(cons2(N, L)), N, L))
SELSORT1(cons2(N, L)) -> IFSELSORT2(eq2(N, min1(cons2(N, L))), cons2(N, L))
[cons1, eq] > s1 > false
[cons1, eq] > 0 > [IFSELSORT2, true, SELSORT1] > min
[cons1, eq] > 0 > false
le > [IFSELSORT2, true, SELSORT1] > min
le > false
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
eq2(0, 0) -> true
eq2(0, s1(Y)) -> false
eq2(s1(X), 0) -> false
eq2(s1(X), s1(Y)) -> eq2(X, Y)
le2(0, Y) -> true
le2(s1(X), 0) -> false
le2(s1(X), s1(Y)) -> le2(X, Y)
min1(cons2(0, nil)) -> 0
min1(cons2(s1(N), nil)) -> s1(N)
min1(cons2(N, cons2(M, L))) -> ifmin2(le2(N, M), cons2(N, cons2(M, L)))
ifmin2(true, cons2(N, cons2(M, L))) -> min1(cons2(N, L))
ifmin2(false, cons2(N, cons2(M, L))) -> min1(cons2(M, L))
replace3(N, M, nil) -> nil
replace3(N, M, cons2(K, L)) -> ifrepl4(eq2(N, K), N, M, cons2(K, L))
ifrepl4(true, N, M, cons2(K, L)) -> cons2(M, L)
ifrepl4(false, N, M, cons2(K, L)) -> cons2(K, replace3(N, M, L))
selsort1(nil) -> nil
selsort1(cons2(N, L)) -> ifselsort2(eq2(N, min1(cons2(N, L))), cons2(N, L))
ifselsort2(true, cons2(N, L)) -> cons2(N, selsort1(L))
ifselsort2(false, cons2(N, L)) -> cons2(min1(cons2(N, L)), selsort1(replace3(min1(cons2(N, L)), N, L)))
eq2(0, 0)
eq2(0, s1(x0))
eq2(s1(x0), 0)
eq2(s1(x0), s1(x1))
le2(0, x0)
le2(s1(x0), 0)
le2(s1(x0), s1(x1))
min1(cons2(0, nil))
min1(cons2(s1(x0), nil))
min1(cons2(x0, cons2(x1, x2)))
ifmin2(true, cons2(x0, cons2(x1, x2)))
ifmin2(false, cons2(x0, cons2(x1, x2)))
replace3(x0, x1, nil)
replace3(x0, x1, cons2(x2, x3))
ifrepl4(true, x0, x1, cons2(x2, x3))
ifrepl4(false, x0, x1, cons2(x2, x3))
selsort1(nil)
selsort1(cons2(x0, x1))
ifselsort2(true, cons2(x0, x1))
ifselsort2(false, cons2(x0, x1))